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Abstract
This paper is concerned with a discrete time random walk on the integers
0, 1, 2, . . . which arises in the game of roulette. At each step either a unit
displacement to the left with probability 1−p or a fixed multiple displacement
to the right with probability p can occur. There is a partially absorbing
barrier at the origin, the probabilities of reflection and absorption at 0 are ρ

and 1 − ρ, respectively. Using generating functions and Lagrange’s theorem
for the expansion of a function as a power series, explicit expression for the
probabilities of the player’s capital at the nth step are deduced, as well as the
probabilities of ultimate absorption at the origin.

PACS numbers: 05.40.Fb, 02.50.Cw, 02.50.Ga, 02.50.Le

1. Introduction

Consider a one-dimensional discrete random walk over the possible positions x = 0, 1, 2, . . . ,
in which a particle can move a unit step to the left or m steps to the right. Let us introduce the
following assumptions:

(i) The probability of a move to the left is 1 −p, and consequently the probability of a move
to the right is p, p > 0.

(ii) When the particle reaches the boundary point x = 0, it is absorbed with probability 1 −ρ

and reflects (to the point x = m) with probability ρ, 0 � ρ � 1.
(iii) The particle starts at the point N,N � 0.

This corresponds to the situation when, at the boundary 0, the particle is either lost from
the system or turned back, and reduces to the classical problems of random walk, associated
with the game of roulette, in the presence of absorbing or reflecting barriers at 0 for ρ = 0
and 1, respectively.
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Anderson and Fontenot (1980) indicate that there is no closed form solution of the random
walk model of the game of roulette in the presence of the assumptions that the casino is infinitely
rich, the particle represents the player’s capital, and at the origin there is a perfectly absorbing
barrier. For a detailed description of the game and for actual values of m and p (see, for
example, Epstein (1967) (p 132), and Downton and Holder (1972)). We are concerned in this
paper with deriving an explicit expression for the probabilities W

(n)
k , k = 0, 1, 2, . . . of the

particle being at the position k after n steps (i.e. the probabilities of the player’s capital after
the nth step). These are easily obtained from the generating functions and Lagrange’s theorem
for the expansion of a function as a power series. We remark that the present expressions for
W

(n)
k , k = 0, 1, 2, . . . appear not to be readily available in the literature. It has previously been

applied to particular cases (see, for example, Kac (1954) (p 295), Feller (1968) (p 352), Hill
and Gulati (1981), Percus (1985) and El-Shehawey (2000)).

The outline of this paper is as follows. A system of equations for the generating function
of the probabilities, W(n)

k , k = 0, 1, 2, . . . are given in section 2. In section 3, using Lagrange’s
theorem, an explicit expression for the probability of ruin exactly at the nth step, W(n)

0 , is
presented, as well as the probability of still playing after the nth step, for n � N . In section 4,
we found an exact solution of the system and explicit expressions for the probabilities, W(n)

k ,
k = 0, 1, 2, . . . the player’s capital is k at the nth step are obtained. The probabilities of
ultimate absorption, and the classical forms when m = 1 are given in section 5.

2. Generating function for the nth step probability of the player’s capital

Let W(n)
k , k = 0, 1, 2, . . . be the n-step probability that the particle is at location k after n steps

(the player’s capital is k after the nth step). The difference equations satisfied by W
(n)
k for

n � 1 are as follows:

W
(n)
k =



(1 − p)W

(n−1)
k+1 for k = 0, 1, 2, . . . , m − 1

(1 − p)W
(n−1)
k+1 + ρ W

(n−1)
k−m for k = m

(1 − p)W
(n−1)
k+1 + pW

(n−1)
k−m for k = m + 1,m + 2, . . .

(2.1)

with the initial condition

W
(0)
k = δk,N for N � 0 (2.2)

where δk,N denotes the usual Kronecker delta.
Introducing the probability generating function Gk(s), k = 0, 1, 2, . . .

Gk(s) =
∞∑
n=0

W
(n)
k sn |s| < 1. (2.3)

Multiplying (2.1) by sn and summing over n = 1, 2, . . . and using (2.2) and (2.3), we
obtain

Gk(s) = δk,N + s



(1 − p)Gk+1(s) for k = 0, 1, . . . , m − 1

{(1 − p)Gk+1(s) + ρGk−m(s)} for k = m

{(1 − p)Gk+1(s) + pGk−m(s)} for k = m + 1,m + 2, . . ..

(2.4)

From formula (2.4) and Q(s, λ) defined by

Q(s, λ) =
∞∑
k=0

λk Gk(s) for |λ| < 1 (2.5)

it is a straightforward matter to deduce that

Q(s, λ) = λN − s (α(λ) − ρ λm)G0(s)

1 − s α(λ)
(2.6)
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where

α(λ) = p λm +
1 − p

λ
. (2.7)

We observe that Q(s, λ) is analytic when |s| � 1 and |λ| < 1. This implies that

G0(α
−1(λ)) = λN

1 − ρ s λm

=
∞∑
r=0

(ρ s)r λN+mr |ρ s λm| < 1 (2.8)

where s satisfies the relation sα(λ) = 1. We then see from equation (2.7) that we need to
determine a root λ of

λ = s(1 − p) + s p λm+1 (2.9)

which is smaller than unity. There are two situations to consider, namely |s| < 1 and |s| = 1.
Notice that we have to calculate functions f (λ) of the form f (λ = λx) where x is a positive
integer, see equation (2.8). For |s| < 1, this can be easily calculated by a formal application
of Lagrange’s theorem (Whittaker and Watson (1963) (p 132)). If λ = A + Bθ(λ) then

f (λ) = f (A) +
∞∑
L=1

BL

L !

dL−1

dAL−1
{f ′(A) [θ(A)]L} (2.10)

where f ′ is the first derivative of f . In this case if the inequality

|p s λm+1| < |λ − s (1 − p)| (2.11)

is satisfied for all points on the unit circle |λ| = 1 then α−1(λ) = s has precisely one root in
the interior of the unit circle, which is real for s real, |s| < 1. Using (2.10) λ is given by

λ = 1
m
√
p s

∫ (1−p)
m
√

p sm+1

0

∞∑
L=0

(
(m + 1) L

L

)
xmL dx. (2.12)

In order to show that (2.11) is satisfied for |s| < 1 and |λ| = 1 we take

λ = eit and s = weiϕ (2.13)

and (2.11) becomes

w2(1 − 2p) + 1 > 2w(1 − p) cos(t − ϕ). (2.14)

This is certainly the case if we consider w such that

w2(1 − 2p) + 1 > 2w(1 − p). (2.15)

Inequality (2.15) can be simplified to

(1 − w)[1 − w(1 − 2p)] > 0 (2.16)

and since 1 − 2p < 1 the restriction |s| < 1 (or w < 1) is a sufficient condition for (2.16)
to hold and therefore (2.11). Thus for |s| < 1 the results obtained are valid for all p. This is
not the case for |s| = 1. Consider, for example, the situation s = 1. In this case the equation
α(λ) = 1 admits the factor (1 − λ) and (2.7) becomes

1 = p λm +
1 − p

λ
or

p

m∑
x=0

λx = 1 (2.17)

and has a single root λ∗ inside the unit circle if (1 +m)p > 1 and no roots inside the unit circle
if (1 + m)p � 1. For all p there is a root at λ = 1 and a double root at λ = 1 if (1 + m)p = 1.
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3. Probabilities that the player’s capital is zero at the nth step

In order to obtain an expression for λx , for any positive integer x, we can use formula (2.10)
with f (λ) = λx , A = s(1 − p), B = sp and θ(λ) = λm+1, to obtain

λx = (s (1 − p))x
∞∑
L=0

x

x + (m + 1) L

(
x + (m + 1) L

L

)
(p (1 − p)m sm+1)L x � 1. (3.1)

Equations (2.8) and (3.1) enable us to find the probability generating function G0(s) of the
form

G0(s) = (s (1 − p))N
∞∑
L=0

L∑
r=0

(ρ/p)r
N + mr

N + (m + 1) L − r

×
(
N + (m + 1) L − r

L − r

)
(p (1 − p)m sm+1)

L
. (3.2)

Observing (2.3) and (3.2) we can conclude that the probabilities that the player’s capital
is zero at the nth step are given by

W
(n)
0 = N

N + (m + 1) L

(
N + (m + 1) L

L

)
pL (1 − p)N+mL

+
L∑

r=1

(ρ/p)r
N + mr

N + (m + 1) L − r

(
N + (m + 1) L − r

L − r

)
pL (1 − p)N+mL

for n = N + (m + 1)L,L � 0,= 0, otherwise. (3.3)

Clearly the player’s capital is zero at the nth step can occur only at steps N + (m + 1)L for
L � 0.

Notice that 1 − (1 − ρ)
∑n

k=0 W
(k)
0 , denoted by U0, is the probability of the player still

playing after the nth step, for n � N , using (3.3) we obtain

U0 = 1 − (1 − ρ) (1 − p)N
[ n−N
m+1 ]∑
L=0

{
N

N + (m + 1) L

(
N + (m + 1) L

L

)

+
L∑

r=1

(
ρ

p

)r
N + mr

N + (m + 1) L − r

(
N + (m + 1) L − r

L − r

)}
(p (1 − p)m)L (3.4)

where [y] denotes the greatest integer not greater than y. Clearly if n < N then U0 = 1.
We remark that the player’s capital is allowed to start from zero, i.e. N = 0, in this case the
probabilities of the player’s capital starting from zero and returning to zero at the nth step
occur only at steps (m + 1)L for L � 0:

W
((m+1) L)
0 = (p (1 − p)m)L

L∑
r=1

mr

(m + 1) L − r

(
(m + 1) L − r

mL

) (
ρ

p

)r

for L � 0.

(3.5)

4. Probabilities that the player’s capital is k after the nth step

To calculate the probabilities that the player’s capital is k after the nth step, W
(n)
k , k =

1, 2, 3, . . . , it is convenient to rewrite (2.6) alternatively as

Q(s, λ) = G0(s) +
λN − (1 − s ρ λm)G0(s)

1 − s α(λ)
. (4.1)
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Assuming |sα(λ)| < 1, we obtain from (2.5) and (4.1), by evaluating the coefficients of
sn that
∞∑
k=0

W
(n)
k λk =

(
1 − ρλm

α(λ)

)
W

(n)
0 + λN(α(λ))n − (1 − (α(λ))−1ρλm)

n∑
j=0

W
(j)

0 (α(λ))n−j

(4.2)

where the probabilities that the player’s capital is zero at the nth step are given in (3.3).
Therefore, W(n)

k for k = 1, 2, 3, . . . are given by

W
(n)
k = 1

2π

∫ 2π

0

{
eitN (α(eit ))n − (1 − ρ eitm(α(eit ))−1)

×
[ n−N
m+1 ]∑
L=0

W
(N+(m+1) L)
0 (α(eit ))n−N−(m+1) L

}
e−ikt dt. (4.3)

It is a simple matter to show from (2.7) that for any two integers β and γ

1

2π

∫ 2π

0
(α(eit ))β e−iγ t dt = 1

2π

∫ 2π

0
{p eimt + (1 − p) e−it }β e−iγ t dt

=
(

β
mβ−γ

m+1

)
p

β+γ
m+1 (1 − p)

mβ−γ

m+1 (4.4)

provided that (mβ − γ )/(m + 1) is an integer.
From (4.3) and (4.4) the probabilities W(n)

k for fixed k are found to be

W
(n)
k =

(
N + (m + 1) j − k

j

)
pj (1 − p)N+mj−k

−
[j− k+1

m+1 ]∑
L=0

(
1 − ρ

p

(j − L)

(m + 1)(j − L) − k

)
W

(N+(m+1) L)
0

×
(
(m + 1) (j − L) − k

j − L

)
pj−L (1 − p)m(j−L)−k

for n = N + (m + 1)j − k, j � 0 and W
(n)
k = 0, otherwise (4.5)

where [y] is to be taken as the greatest integer not greater than y if y is non-negative. If
j − (k + 1)/(m + 1) is strictly negative then the term involving the summation in (4.5) does
not arise.

Formulae (3.3) and (4.5) enable us to find explicit expressions for the only non-zero
probabilities W(n)

k , k = 0, 1, 2, 3, . . . in the form

W
(n)
k = pj (1 − p)N+mj−k

{(
N + (m + 1) j − k

j

)

−
[j− k+1

m+1 ]∑
L=0

L∑
r=0

(
ρ

p

)r (
1 − ρ

p

(j − L)

(m + 1)(j − L) − k

)

× N + mr

N + (m + 1) L − r

(
N + (m + 1) L − r

L − r

) (
(m + 1) (j − L) − k

j − L

)}
for n = N + (m + 1)j − k, j � 0 and W

(n)
k = 0 otherwise. (4.6)
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Notice that the first term of (4.6) (or (4.5)) is the unconditional probability that the player’s
capital is k after N + (m + 1)j − k steps with no partially absorbing barrier at the origin. The
subtracted summation term arises from the possibility of absorption, with probability (1 − ρ),
prior to the (N + (m + 1)j − k)th step. Each term involves the probability the player’s capital
is k with a passage to k = 0 at step N + (m + 1)L− r times the unconditional probability that
the player’s capital starting from 0 and arriving at k in (m + 1)(j − L) − k steps.

If a perfectly absorbing barrier at the origin is considered, i.e. ρ = 0, then the probability
that the player’s capital is k after the nth step for j � 0 is given by

W
(N+(m+1) j−k)

k = pj (1 − p)N+mj−k

×




N

N + (m + 1) j

(
N + (m + 1) j

j

)
for k = 0

(
N + (m + 1)j − k

j

)
−

[j− k
m+1 ]∑

L=0

N

N + (m + 1)L

×
(
N + (m + 1) L

L

)(
(m + 1) (j − L) − k

j − L

)
for k = 1, 2, 3, . . . .

(4.7)

Formula (4.7) can alternatively be expressed as

W
(n)
k =




N

n

(
n

n−N
m+1

)
p

n−N
m+1 (1 − p)

mn+N
m+1 for k = 0[(

n
n−N+k
m+1

)
−

(
n

n+N+k
m+1

)]
p

n−N+k
m+1 (1 − p)n−( n−N+k

m+1 ) for k = 1, 2, . . . .

(4.8)

We see that with the appropriate change of notation, expression (4.7) agrees with that of
Hill and Gulati (1981), formulae (14) and (21); expression (4.8) agrees with that of Percus
(1985) in the classical case m = 1 (see, also, Feller (1968) (p 352)).

5. The probability of absorption at the boundary

In order to deduce an expression for the probabilities of ultimate absorption at the boundary
0, we first find the expected value of the number of times the state 0 is occupied, E[nN(m)],
defined by

E[nN(m)] =
∞∑
n=0

W
(n)
0 (5.1)

(see, for example, Kemeny and Snell (1976) (pp 46, 47) and Iosifescu (1980) (pp 99, 100)),
from formulae (2.8) and (2.12) after setting s = 1, we obtain for N � 0,

E[nN(m)] =




λN

1 − ρ λm
for p > 1

m+1

1

1 − ρ
for p � 1

m+1

(5.2)

where

λ = 1
m
√
p

∫ (1−p) m
√
p

0

[ ∞∑
L=0

(
(m + 1) L

L

)
xmL

]
dx. (5.3)
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Thus the probabilities of ultimate absorption at 0, (1 − ρ)E[nN(m)] are given by

(1 − ρ) λN

{
1 +

∞∑
r=1

(ρ λm)r
}

for p > 1
m+1

1 for p � 1
m+1

(5.4)

whereas the survival probabilities are therefore


1 − (1 − ρ) λN
∞∑
r=0

(ρ λm)r for p > 1
m+1

0 for p � 1
m+1 .

(5.5)

Many interesting special cases can be derived from our results through appropriate choices of
m, ρ, N and p; an example is given below:

Consider the case m = 1, using the identity
∞∑
L=0

(
2L
L

)
xL = (1 − 4x)−

1
2 (5.6)

formula (2.12) becomes

λ∗ = 1

2ps

(
1 −

√
1 − 4p (1 − p) s2

)
(5.7)

and the probability generating function expression for the player’s capital is k after the nth
step is given by

∞∑
n=0

W
(n)
0 sn = λ∗N

1 − s ρ λ∗ . (5.8)

Therefore

E[nN(1)] =




( 1−p

p

)N
1 − ρ

( 1−p

p

) for p > 1
2

1

1 − ρ
for p � 1

2

(5.9)

and the probability of absorption at the boundary 0 takes the form

(1 − ρ)E[nN(1)] =




(1 − ρ)

1 − ρ
( 1−p

p

)(
1 − p

p

)N

for p > 1
2

1 for p � 1
2

(5.10)

whereas

the survival probability is


1 − (1 − ρ)

1 − ρ
( 1−p

p

) (
1 − p

p

)N

for p > 1
2

0 for p � 1
2 .

(5.11)

The mean number of steps taken until being absorbed, given that the player is absorbed
at the boundary 0, E∗

N , is given for ρ �= 1 by

E∗
N = (1 − ρ)

∑∞
n=0 nW

(n)
0

(1 − ρ)E[nN(1)]
= 1

E[nN(1)]

d

ds
G0(s)

∣∣∣∣
s=1

=




1

|1 − 2p|

{
N +

2 ρ (1 − p)

1 − ρ min
(
1, 1−p

p

)
}

for p �= 1
2

∞ for p = 1
2 .

(5.12)
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We have the immediate consequence from formula (3.3) that the probability of the player’s
capital is zero at the nth step:

W
(n)
0 =




N

n

(
n

n−N
2

)
p

n−N
2 (1 − p)

n+N
2 for ρ = 0

p
n−N

2 (1 − p)
n+N

2

[ n−N
2 ]∑

j=0

n + N − 2j

n + N + 2j

(
n+N

2 + j

j

)
for ρ = p

p
n−N

2 (1 − p)
n+N

2

[ n−N
2 ]∑

j=0

n + N − 2j

n + N + 2j

(
n+N

2 + j

j

)
2

n−N
2 −j for ρ = 2p

(1 − p)
n+N

2

[ n−N
2 ]∑

j=0

n + N − 2j

n + N + 2j

(
n+N

2 + j

j

)
pj for ρ = 1.

(5.13)

Similar expressions can be obtained for the probability of the player’s capital is k, k =
1, 2, . . . at the nth step using formula (4.6). These expressions show that W(n)

k , k = 0, 1, . . .
takes on qualitatively different forms depending on the relationship between p and ρ.

We see that with the appropriate change of notation, formula (5.4) with ρ = 0 agrees with
that of Hill and Gulati (1981). Formulae (5.7)–(5.12) agree with that of Percus (1985) (see,
also, El-Shehawey (2000)).
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